Sensorimotor Adaptations Following ACL Reconstruction: Implications for an Evidence Based Treatment Approach?

Grant Norte, MEd, ATC
University of Virginia
Department of Kinesiology
Exercise and Sport Injury Laboratory

Outline

- Joint injury as a source of disability
- Assessment techniques
- Study findings
- Evidence of sensorimotor adaptation

Learning Objectives

- Following ACL reconstruction:
 - Identify sources of sensorimotor impairment
 - Identify and interpret assessment techniques to examine sensorimotor impairment
 - Summarize the evidence supporting sensorimotor adaptation

Musculoskeletal Pathology

- ACL rupture common in sports (Beynon et al., 2003)
- ACL reconstruction often recommended to facilitate return to sport (Mars et al., 2005)

Joint Injury Drives MSK Injury

ACL Epidemiology

- 1.3% annual increase in ACL injury ('88-'04) (Hootman et al., 2007)
Sub-Optimal Outcomes

- 65% return to pre-injury status (Ardern et al., 2014)
 - 55% to competitive sport
- 29.5% suffer secondary ACL injury within 24 months (Paterno et al., 2014)
- Knee-related QOL at 9 years (range 6-15 years) (Filbray et al., 2014)

Incomplete recovery post ACL-R

- 55% return to pre-injury status
- 29.5% suffer secondary ACL injury within 24 months
- Knee-related QOL at 9 years (range 6-15 years)

Manifestations of Joint Injury

- Structural Changes
- Morphological Changes
- Muscle Weakness
- Neuromuscular Alterations
- Impaired Movement Strategies
- Altered Fitness Levels
- Altered Biomechanics
- Fear/Disability/Decreased Quality of Life

Acceleration of Degeneration

ACL Injury and Osteoarthritis

- 10-90% at 10-20 years (Lohmander et al., 2007)
- 2014 Systematic Review (Luc et al., 2014)
 - Total: 44%
 - 0-20 years: 36%
- 2015 Systematic Review (Harris et al., 2015)
 - 41% (95% CI 35-48%) at 12 years

Lack of evidence to suggest ACL-R will prevent knee OA

Quadriceps Function and Joint Health

- Post-traumatic quadriceps dysfunction
 - Altered biomechanics (Andriacchi, 1993)
 - Physical activity (Fitzgerald et al., 2004)
 - Risk of re-injury (Paterno et al., 2014)
 - Self-reported disability (Ericsson et al., 2013)
 - Onset of joint degeneration (Oiestad et al., 2011)
Defining the Problem

- Muscle is uninjured, yet unable to adequately contract
- Phenomenon is not unique to injury…
 - ACL tear/reconstruction
 - Meniscal tear/meniscectomy
 - Patellofemoral pain
 - Osteoarthritis
 - Total knee arthroplasty

Arthrogenic Muscle Inhibition

- “Arthro” = Joint
- “Genic” (genesis) = Origin
- “Muscle inhibition” = Inability to contract muscle
- AMI = Inability to contract an uninjured muscle due to pathology at the joint

What Causes AMI?

- Altered afferent stimuli from joint receptors transmitted to spinal cord
 (de Andrade et al., 1965; Stokes and Young, 1984)

Neuromuscular Adaptation

Healthy MN Pool
- Peripheral

Inhibited MN Pool
- Sensorimotor Assessment

A Clinical Dilemma
Superimposed Burst Technique

- Central Activation Ratio (CAR)
- Knee Extension MVIC Torque

\[
\text{CAR} = \frac{F_{\text{FVIC}}}{F_{\text{MVIC}} + F_{\text{CM}}}
\]

Measuring Quadriceps Activation

- Reliability:
 - Healthy
 - Patellofemoral pain
 - Closed-Chain

- Studied in:
 - ACL reconstruction
 - ACL deficient
 - Patellofemoral pain
 - Osteoarthritis

Hoffmann Reflex

- Estimate of motoneuron pool activity (Palmieri et al., 2004)
 - αMN excitability of target muscle

- Think stretch reflex minus the stretch

H-Reflex Pathway

- Stimulator (B)
- Sensory Nerve
- Motor Nerve
- EMG (A)

Hoffmann Reflex

- H-Reflex
 - MN that are available for use...not what is going to be used

- M-Response
 - Entire αMN pool

- H:M Ratio
 - Proportion of motoneuron pool capable of being recruited

Measuring Spinal Reflexes

- Soleus
- Peroneals
- Tibialis Anterior
- Quadriceps

- Reliability:
 - Peripheral nerves

- Studies In:
 - Musculoskeletal injury
 - Effects of therapeutic modalities/ pain
 - Response to exercise
 - Performance of motor tasks

Transcranial Magnetic Stimulation

“Non-invasive tool for measuring neural conduction and processing time, activation thresholds, facilitation and inhibition in cerebral cortex, and neural connections.”

(Anand and Hotson, 2002)

Measuring Cortical Reflexes

- Single or paired pulse
 - Multiple sclerosis
 - Amyotrophic lateral sclerosis
 - Stroke
 - Movement disorders
 - Spinal cord disorders
 - Musculoskeletal injury

TMS Procedures

- **Diagnostic**
 - Peroneals
 - Gluteus

- **Repetitive**
 - Tibialis anterior
 - Quadriceps

ICC

Creating a Motor Program

- Creating a Motor Program

Creating a Motor Program

- Creating a Motor Program
Evoking a Motor Potential

Understanding the Motor Threshold

- Lowest intensity capable of eliciting MEP
 - Reflects excitability of central core of neurons

What Does a Higher Threshold Mean?

Early Identification

- Theoretical temporal changes following knee joint injury
 - Strength
 - Activation
 - Fatigue
 - Spinal reflex
 - Corticospinal
 - Motor control
PICO Clinical Question

- In young, active persons with **ACL reconstruction** compared to healthy individuals, do **a)** peripheral, **b)** spinal, and **c)** supraspinal pathways of the sensorimotor system differ over time?

P – Young, active persons with **ACL reconstruction**

I – **ACL reconstruction**

C – Healthy, matched controls

O – Sensorimotor pathways

Experimental Design

- **Cross Section**

- **Independent Variables**
 - Group (ACL-R – 6 months, 1 year, > 2 years, Healthy)
 - Limb (Injured, Uninjured)

- **Primary Outcome Measures**
 - Knee extension torque (Nm/kg)
 - Quadriceps central activation ratio (%)
 - Hoffman Reflex (H:M ratio)
 - Active Motor Threshold (%)

Patient Reported Outcomes

- **IKDC subjective knee evaluation form (IKDC)**
- **Knee Osteoarthritis Outcome Score (KOOS)**
 - Pain, Symptoms, ADL, Sport, QOL
- **Tampa Scale for Kinesiophobia (TSK)**
- **Veteran’s Rand 12-Item Health Survey (VR-12)**
- **Tegner Activity Scale**
- **Godin Leisure-Time Questionnaire**
- **Visual Analog Scale for pain (VAS)**

Participants

- **ACL Reconstruction (n = 39)**
 - 15-45 years
 - Primary, unilateral
 - Uncomplicated
 - Time from surgery

CONSORT Flow Diagram

Assessed for Eligibility (n = 54)

No

Embarrassed (n = 5)
Followed up (n = 17)

Group Allocation (n = 52)

ACL-R – 6 months (n = 15)

ACL-R – 12 months (n = 8)

ACL-R – 2+ years (n = 16)

Healthy Control (n = 13)

Hoffmann Reflex

Knee Extension MVC

Supraspinale Stimulation

Transcranial Magnetic Stimulation

Quadriceps Torque Reduced

Peak Knee Extension Torque (Nm)

6 month 1 year 2 year Healthy

P = 0.014
P = 0.024
P = 0.024

Injured
Uninjured

Quadriceps Activation Reduced

Spinal Excitability

Corticospinal Excitability Reduced

Clinically Meaningful?

Reduced Strength

Explaining Strength

Neuromuscular Adaptations

• Following ACL-R:
 - Quadriceps strength > 2 years*
 - Quadriceps activation at 12 months*
 - Corticospinal excitability at 6-12 months*
 - Spinal reflexes are unchanged (trend)

*Large magnitude Δ!

• Do neurophysiologic measures influence strength and/or patient reported outcomes?
Explaining Patient Outcomes

<table>
<thead>
<tr>
<th>IKDC (R2)</th>
<th>6 months</th>
<th>1 year</th>
<th>2+ years</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM</td>
<td>0.002</td>
<td>0.102</td>
<td>0.019</td>
</tr>
<tr>
<td>AMT</td>
<td>0.019</td>
<td>0.042</td>
<td>0.023</td>
</tr>
<tr>
<td>MVIC</td>
<td>0.003</td>
<td>0.186</td>
<td>0.250</td>
</tr>
<tr>
<td>CAR</td>
<td>0.000</td>
<td>0.051</td>
<td>0.068</td>
</tr>
</tbody>
</table>

Meaningful to Patient?

Cohen’s d effect sizes with 95% confidence intervals

IKDC (6 month)	0.000
IKDC (1 year)	0.051
IKDC (2+ years)	0.068
KOOS (6 months)	0.051
KOOS (1 year)	0.068
KOOS (2+ years)	0.250
TSK (6 months)	0.051
TSK (1 year)	0.068
TSK (2+ years)	0.250
VR-12 (6 months)	0.051
VR-12 (1 year)	0.068
VR-12 (2+ years)	0.250

Self-Perceived Function

- Following ACL-R:
 - ↓ Knee-specific function (IKDC, KOOS) > 2 years
 - ↑ Fear of movement (TSK) at 6 months
 - ↓ Global health (VR-12) at 6 months

 Large magnitude Δ!

Voluntary Activation Deficits

2-24 months from surgery

Immediate Change in Spinal Reflexes

- Early effusion models used to demonstrate an acute decrease in quadriceps motor neuron pool (DeAndrade et al, 1965; Spencer et al, 1984; Roumdile et al, 1985; Jensen and Graf, 1993; McNair et al, 1996; Wood et al, 1996)

- Immediate changes in:
 - ↑ Soleus (Hopkins et al, 2001)

Spinal Reflexes in Pathology

- Alterations in spinal reflexes
 - Functional ankle instability (Palmeier-Smith et al, 2009; McVey et al, 2005)
 - Acute ankle sprain (Klykken et al, 2011)

- ACL Injury? (Heroux and Tremblay, 2006)
 - N=5 ACL deficient
 - Injured limb trended toward lower H-reflex amplitude ($p = .07$)
Evidence of Cortical Changes?

- ACL deficient
 - 10 ACL-D
 - 8 Healthy
- Injured limb had lower resting threshold in ACL group
- Chronic adaptation to maintain function?

Corticospinal Adaptation

- 20 healthy knees artificially effused
- Results
 - No immediate changes in corticospinal excitability!
 - Evidence for chronic adaptation?

Cortical Change and Ankle Instability

- Case control
 - Chronic ankle instability (n=10)
 - Control (n=10)
- Results
 - Higher resting threshold in fibularis longus

Neural Changes and ACL-R

- Case control
 - ACL-R (n=29)
 - Matched healthy (n=29)
- Results
 - Higher resting threshold in fibularis longus

What Matters?

- Neural alterations are related to quadriceps strength
 - CAR (37%) + H:M (10%) + AMT (2%) predicted 49% of variance in MVIC (Lepley et al., 2014)
- Strength and cortical excitability are related to self-reported disability
 - MVIC (61%) + AMT (5%) predicted 66% of variance in IKDC score (Pietrosimone et al., 2013)
Evidence of Neuromuscular Change?

- **Quadriceps activation:** Level 1-2, B
- **Quadriceps spinal reflex:** Level 3-5, C
- **Quadriceps corticospinal reflex:** Level 2-3, B

Evidence of Neuromuscular Change?

<table>
<thead>
<tr>
<th>6 months</th>
<th>12 months</th>
<th>>24 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength</td>
<td>Activation</td>
<td>Cortical</td>
</tr>
</tbody>
</table>

Significance

- **Research**
 - Understanding nature of post-traumatic neurophysiologic modulation
 - Validate patient-specific intervention

- **Clinical Implications**
 - Early identification = Early treatment!

What’s Next

- 6 months
- 12 months
- >24 months

Take Home Points

- Modulation of the sensorimotor system occurs following knee joint trauma
- Worthwhile to look beyond gross strength measures as an outcome to identify source of impairment
- Identifying sensorimotor adaptations, specifically mal-adaptations early may provide a targeted treatment approach

Clinical Bottom Line

- Early identification is key!
- Cost-effective treatment approaches to target sensorimotor impairments exist that may supplement traditional rehabilitation techniques after ACL reconstruction

Acknowledgements

- EATA
- Lindsay Slater, MS
- John Goetschius, MED, ATC
- Joe Hart, PhD, ATC
Thank You

Exercise & Sport Injury Laboratory
Department of Kinesiology

Grant Norte
gen5e@virginia.edu

Resources for EBP

- Centre for Evidence Based Medicine
 – http://www.cebm.net/
- PubMed Literature Searching Tutorial

Patient Reported Outcomes

<table>
<thead>
<tr>
<th></th>
<th>6 months (n = 15)</th>
<th>1 year (n = 8)</th>
<th>2+ year (n = 16)</th>
<th>Healthy (n = 13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKDC</td>
<td>81 ± 13</td>
<td>89 ± 17</td>
<td>97 ± 11</td>
<td>99 ± 3</td>
</tr>
<tr>
<td>KOOS</td>
<td>88 ± 11</td>
<td>91 ± 5</td>
<td>93 ± 6</td>
<td>99 ± 1</td>
</tr>
<tr>
<td>KOOS: Pain</td>
<td>91 ± 9</td>
<td>97 ± 6</td>
<td>94 ± 5</td>
<td>99 ± 1</td>
</tr>
<tr>
<td>KOOS: Symptoms</td>
<td>86 ± 14</td>
<td>83 ± 13</td>
<td>90 ± 9</td>
<td>98 ± 4</td>
</tr>
<tr>
<td>KOOS: ADL</td>
<td>93 ± 8</td>
<td>99 ± 2</td>
<td>97 ± 4</td>
<td>100 ± 1</td>
</tr>
<tr>
<td>KOOS: Sport</td>
<td>77 ± 19</td>
<td>87 ± 12</td>
<td>90 ± 12</td>
<td>98 ± 5</td>
</tr>
<tr>
<td>KOOS: QOL</td>
<td>65 ± 22</td>
<td>71 ± 13</td>
<td>81 ± 13</td>
<td>99 ± 2</td>
</tr>
<tr>
<td>VAS (cm)</td>
<td>0.6 ± 0.8</td>
<td>0.6 ± 0.9</td>
<td>0.4 ± 0.6</td>
<td>0.1 ± 0.2</td>
</tr>
<tr>
<td>Tegner</td>
<td>6 ± 2</td>
<td>8 ± 2</td>
<td>7 ± 2</td>
<td>8 ± 1</td>
</tr>
<tr>
<td>Godin</td>
<td>62 ± 23</td>
<td>63 ± 21</td>
<td>55 ± 26</td>
<td>67 ± 30</td>
</tr>
<tr>
<td>Tampa</td>
<td>54 ± 8</td>
<td>54 ± 7</td>
<td>40 ± 6</td>
<td>26 ± 7</td>
</tr>
<tr>
<td>VR-12</td>
<td>80 ± 10</td>
<td>84 ± 6</td>
<td>85 ± 5</td>
<td>88 ± 6</td>
</tr>
</tbody>
</table>

Treating Neural Impairment

- Paradigm shift?